Post-fire recovery in old-growth, plantation, and salvaged logged mixed conifer forests

Lisa M. Ellsworth, Oregon State University, Department of Fisheries and Wildlife

Boone Kauffman, Oregon State University, Department of Fisheries and Wildlife Jane Kertis, USDA Forest Service, Northwest Oregon Ecology Group Steve Acker, USDA Forest Service, Northwest Oregon Ecology Group David Bell, USDA Forest Service, Pacific Northwest Research Station

Fire regimes characterized by variability - Time

Weisberg and Swanson 2003

Mean Fire Return Intervals: 30-200 years (Tepley et al 2013)

Western Hemlock and Douglas Fir Zones of Oregon and Washington Adapted from Jan Henderson, USDA Forest Service

Fire regimes characterized by variability – Type and Frequency

Multiple Use Forests – Alter Successional Dynamics

- Recreation
- Environmental Services
- Non-timber forest products
- Timber products
 - Pre-fire Plantations
 - Post-fire Salvage Logging

Management activities likely alter patterns of fuel succession

Current Research

Objectives

- 1. Quantify the long-term trajectories of succession, fuels dynamics and potential future fire behavior as influenced by
 - prefire conditions (logged or old growth)
 - fire severity (low, moderate, high)
 - post-fire management (salvage, natural recovery)

Current Research

Objectives

- 2. Determine how different fuel structures will impact reburn potential
 - field fuel measurements
 - fire behavior modeling

Mesic Mixed Conifer Forests Western Hemlock Zone

Willamette National Forest

- Warner Creek Fire 1991 natural regeneration
- Shady Beach 1988 salvage and plantation

Umpqua National Forest

- Apple Fire 2002 natural, plantation, and salvage
- Spring 1996 or TBD

Methods

5 plots per forest type (Low, Moderate, High, Salvage, Plantation)2 Fires/Fire Pairs (to date)Modified FIA plot design

Methods

- Stand Structure
 - Species, dbh, live/dead
 - Large Trees (>10 cm dbh)
 - Small Trees/Understory (<10 cm dbh)
 - Allometric equations Biomass
- Fuel Structure
 - Depth and Cover
 - Canopy
 - Subcanopy
 - Understory
 - Shrub
 - Herbaceous
 - Litter/Duff
- Fire Behavior Modeling (Fuel and Fire Tool)
- Year 1 of 3 completed

Apple Fire – 15 years post-fire

Canopy Trees (Douglas Fir and Western Hemlock)

	mean				mean	
	dbh					dbh
	live/ha	(CI	m)	snag	s/ha	(cm)
low	1583		50)	732	49
mod	2589		81	L	2038	62
high	2301		72	2	2166	73
salvage	0				2229	65
plant	973		31		1879	69

Apple Fire – 15 years post-fire

Understory <10 cm dbh (Shrubs and Young Regeneration)

	live/ha c	lead/ha
low	2643	0
mod	9904	158
high	10860	62
salvage	8726	30
plant	22611	53

Warner and Shady Beach – 26-29 years post-fire

Canopy Trees (Douglas Fir and Western Hemlock)

		mean			mean
		dbh			dbh
	live/ha	(cm)	sna	igs/ha	(cm)
low	1798	56	5	732	49
mod	1130	35	5	2038	62
high	1895	60)	2166	73
salvage	995	31		2229	65
plant	873	27	7	1879	69

Warner and Shady Beach – 26-29 years post-fire

Understory <10 cm dbh (Shrubs and Young Regeneration)

	live/ha de	ad/ha
low	6752	446
mod	17803	1051
high	9904	1752
salvage	19268	1338
plant	5446	318

Reburn potential – Are the way we are managing our forests changing the next fire?

- More in 2018-19
- Preliminary thoughts 15 YPF (Apple Fire)
 - More large trees in natural forests shading effect
 - Low severity plots very low understory – continued low severity patches?
 - Very dense understory in Plantations
 - Increased fuel moisture early
 - Extreme fire behavior late season

Reburn potential – Are the way we are managing our forests changing the next fire?

- More in 2018-19
- Preliminary thoughts 26-29 YPF
 - Larger, more trees regenerating in unmanaged high severity
 - Salvage plots very similar to moderate severity
 - Sparse canopy and very dense understory → more severe fire?
 - Plantations
 - Few, smaller trees AND sparser understory → reduced fire potential?
 - Contrast to Apple different management?

- More fires sampled in 2018
- Comprehensive fuel profiles and fire modeling
- Once vs Twice burned
- Fires as barriers to future fire landscape modeling and management scenario development

Thanks

- Willamette National Forest
- Umpqua National Forest
- Joint Fire Science Program
- Field Crew: Trevor Bavarskas, Becca Crawford, Dani Jackson, Isabella Gabriel

